Reduce, Reuse, Recycle (R3): A design methodology for Sparse Matrix Vector Multiplication on reconfigurable platforms
نویسندگان
چکیده
منابع مشابه
Reduce, Reuse, Recycle (R): a Design Methodology for Sparse Matrix Vector Multiplication on Reconfigurable Platforms
Sparse Matrix Vector Multiplication (SpMV) is an important computational kernel in many scientific computing applications. Pipelining multiply-accumulate operations shifts SpMV from a computationally bounded kernel to an I/O bounded kernel. In this paper, we propose a design methodology and hardware architecture for SpMV that seeks to utilize system memory bandwidth as efficiently as possible, ...
متن کاملAn FPGA Drop-In Replacement for Universal Matrix-Vector Multiplication
We present the design and implementation of a universal, single-bitstream library for accelerating matrixvector multiplication using FPGAs. Our library handles multiple matrix encodings ranging from dense to multiple sparse formats. A key novelty in our approach is the introduction of a hardware-optimized sparse matrix representation called Compressed Variable-Length Bit Vector (CVBV), which re...
متن کاملHigh performance sparse matrix-vector multiplication on FPGA
This paper presents the design and implementation of a high performance sparse matrix-vector multiplication (SpMV) on fieldprogrammable gate array (FPGA). By proposing a new storage format to compress the indexes of non-zero elements by exploiting the substructure of the sparse matrix, our SpMV implementation on a reconfigurable computing platform with a multi-channel memory subsystem is capabl...
متن کاملAutotuning Sparse Matrix-Vector Multiplication for Multicore
Sparse matrix-vector multiplication (SpMV) is an important kernel in scientific and engineering computing. Straightforward parallel implementations of SpMV often perform poorly, and with the increasing variety of architectural features in multicore processors, it is getting more difficult to determine the sparse matrix data structure and corresponding SpMV implementation that optimize performan...
متن کاملA lightweight optimization selection method for Sparse Matrix-Vector Multiplication
In this paper, we propose an optimization selection methodology for the ubiquitous sparse matrix-vector multiplication (SpMV) kernel. We propose two models that attempt to identify the major performance bottleneck of the kernel for every instance of the problem and then select an appropriate optimization to tackle it. Our first model requires online profiling of the input matrix in order to det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013